skip to main content


Search for: All records

Creators/Authors contains: "Gilbert, Matthew E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Background Remote sensing instruments enable high-throughput phenotyping of plant traits and stress resilience across scale. Spatial (handheld devices, towers, drones, airborne, and satellites) and temporal (continuous or intermittent) tradeoffs can enable or constrain plant science applications. Here, we describe the technical details of TSWIFT (Tower Spectrometer on Wheels for Investigating Frequent Timeseries), a mobile tower-based hyperspectral remote sensing system for continuous monitoring of spectral reflectance across visible-near infrared regions with the capacity to resolve solar-induced fluorescence (SIF). Results We demonstrate potential applications for monitoring short-term (diurnal) and long-term (seasonal) variation of vegetation for high-throughput phenotyping applications. We deployed TSWIFT in a field experiment of 300 common bean genotypes in two treatments: control (irrigated) and drought (terminal drought). We evaluated the normalized difference vegetation index (NDVI), photochemical reflectance index (PRI), and SIF, as well as the coefficient of variation (CV) across the visible-near infrared spectral range (400 to 900 nm). NDVI tracked structural variation early in the growing season, following initial plant growth and development. PRI and SIF were more dynamic, exhibiting variation diurnally and seasonally, enabling quantification of genotypic variation in physiological response to drought conditions. Beyond vegetation indices, CV of hyperspectral reflectance showed the most variability across genotypes, treatment, and time in the visible and red-edge spectral regions. Conclusions TSWIFT enables continuous and automated monitoring of hyperspectral reflectance for assessing variation in plant structure and function at high spatial and temporal resolutions for high-throughput phenotyping. Mobile, tower-based systems like this can provide short- and long-term datasets to assess genotypic and/or management responses to the environment, and ultimately enable the spectral prediction of resource-use efficiency, stress resilience, productivity and yield. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. Proximal remote sensing offers a powerful tool for high-throughput phenotyping of plants for assessing stress response. Bean plants, an important legume for human consumption, are often grown in regions with limited rainfall and irrigation and are therefore bred to further enhance drought tolerance. We assessed physiological (stomatal conductance and predawn and midday leaf water potential) and ground- and tower-based hyperspectral remote sensing (400 to 2,400 nm and 400 to 900 nm, respectively) measurements to evaluate drought response in 12 common bean and 4 tepary bean genotypes across 3 field campaigns (1 predrought and 2 post-drought). Hyperspectral data in partial least squares regression models predicted these physiological traits ( R 2 = 0.20 to 0.55; root mean square percent error 16% to 31%). Furthermore, ground-based partial least squares regression models successfully ranked genotypic drought responses similar to the physiologically based ranks. This study demonstrates applications of high-resolution hyperspectral remote sensing for predicting plant traits and phenotyping drought response across genotypes for vegetation monitoring and breeding population screening. 
    more » « less
  3. Steppe, Kathy (Ed.)
    Abstract Sap velocity measurements are useful in fields ranging from plant water relations to hydrology at a variety of scales. Techniques based on pulses of heat are among the most common methods to measure sap velocity, but most lack ability to measure velocities across a wide range, including very high, very low and negative velocities (reverse flow). We propose a new method, the double-ratio method (DRM), which is robust across an unprecedented range of sap velocities and provides real-time estimates of the thermal diffusivity of wood. The DRM employs one temperature sensor upstream (proximal) and two sensors downstream (distal) to the source of heat. This facilitates several theoretical, heat-based approaches to quantifying sap velocity. We tested the DRM using whole-tree lysimetry in Eucalyptus cypellocarpa L.A.S. Johnson and found strong agreement across a wide range of velocities. 
    more » « less
  4. Abstract Climate change adaptation requires building agricultural system resilience to warmer, drier climates. Increasing temporal plant diversity through crop rotation diversification increases yields of some crops under drought, but its potential to enhance crop drought resistance and the underlying mechanisms remain unclear. We conducted a drought manipulation experiment using rainout shelters embedded within a 36-year crop rotation diversity and no-till experiment in a temperate climate and measured a suite of soil and crop developmental and eco-physiological traits in the field and laboratory. We show that diversifying maize-soybean rotations with small grain cereals and cover crops mitigated maize water stress at the leaf and canopy scales and reduced yield losses to drought by 17.1 ± 6.1%, while no-till did not affect maize drought resistance. Path analysis showed a strong correlation between soil organic matter and lower maize water stress despite no significant differences in soil organic matter between rotations or tillage treatments. This positive relationship between soil organic matter and maize water status was not mediated by higher soil water retention or infiltration as often hypothesized, nor differential depth of root water uptake as measured with stable isotopes, suggesting that other mechanisms are at play. Crop rotation diversification is an underappreciated drought management tool to adapt crop production to climate change through managing for soil organic matter. 
    more » « less
  5. null (Ed.)
    Maintaining high rates of photosynthesis in leaves requires efficient movement of CO 2 from the atmosphere to the mesophyll cells inside the leaf where CO 2 is converted into sugar. CO 2 diffusion inside the leaf depends directly on the structure of the mesophyll cells and their surrounding airspace, which have been difficult to characterize because of their inherently three-dimensional organization. Yet faster CO 2 diffusion inside the leaf was probably critical in elevating rates of photosynthesis that occurred among angiosperm lineages. Here we characterize the three-dimensional surface area of the leaf mesophyll across vascular plants. We show that genome size determines the sizes and packing densities of cells in all leaf tissues and that smaller cells enable more mesophyll surface area to be packed into the leaf volume, facilitating higher CO 2 diffusion. Measurements and modelling revealed that the spongy mesophyll layer better facilitates gaseous phase diffusion while the palisade mesophyll layer better facilitates liquid-phase diffusion. Our results demonstrate that genome downsizing among the angiosperms was critical to restructuring the entire pathway of CO 2 diffusion into and through the leaf, maintaining high rates of CO 2 supply to the leaf mesophyll despite declining atmospheric CO 2 levels during the Cretaceous. 
    more » « less
  6. Abstract

    Given the changing climate and increasing impact of agriculture on global resources, it is important to identify phenotypes which are global and sustainable optima. Here, an in silico framework is constructed by coupling evolutionary optimization with thermodynamically sound crop physiology, and its ability to rationally design phenotypes with maximum productivity is demonstrated, within well‐defined limits on water availability.  Results reveal that in mesic environments, such as the North American Midwest, and semi‐arid environments, such as Colorado, phenotypes optimized for maximum productivity and survival under drought are similar to those with maximum productivity under irrigated conditions. In hot and dry environments like California, phenotypes adapted to drought produce 40% lower yields when irrigated compared to those optimized for irrigation. In all three representative environments, the trade‐off between productivity under drought versus that under irrigation was shallow, justifying a successful strategy of breeding crops combining best productivity under irrigation and close to best productivity under drought.

     
    more » « less